

Revealing the climate story hidden in mangroves in NSW coastal wetlands

M Goodwin¹, K Allen², NB English³, H Haines³, Q Hua⁴, D Verdon-Kidd¹ ¹University of Newcastle, Callaghan, NSW ²University of Melbourne, Parkville, VIC ³Central Queensland University, Townsville, QLD ⁴Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW

Image credit: (Ashley, 2017)

Framing the problem...

- Australian climate is highly variable
- Instrumental climate records are very short (<150 years)
- However, can be supplemented with data interpreted from palaeoclimate archives...
 - Cave deposits, lake sediments, ice cores, coral luminescence, tree rings

Australian tree ring climate reconstructions

- Most feature Tasmanian species
- Very few mainland climate reconstructions
 - Scarcity of annual ring forming species
 - Limited life span

Australian mainland tree ring palaeoclimate reconstructions

Beyond ring width – emerging approaches

- Alternate wood properties that may vary in response to climate
 - Chemical composition (stable isotopes C, H, O),
 - Anatomic features (xylem vessel size and abundance)
- Measured in sequence from pith to bark

- Temporal control when did the growth occur?
 - Bomb pulse radiocarbon dating

Bomb pulse radiocarbon dating example (adapted from Hua, 2009)

Why consider Grey Mangroves for dendroclimatology?

- Long lived (>1000 years)
- Very common in Australia
- Demonstrated environmental sensitivity
- Santini et. al (2013) wood density of West Australian mangroves correlates significantly with the Pacific Decadal Oscillation
- Success in other mangrove species, but untested in grey mangroves

Grey mangrove "growth rings"

Study Aim: to establish whether radiocarbon dated timeseries of C and O isotopes and

wood anatomy correlate with a range of climate variables

Sample sites

Samples collected with permission from NSW DPI (*Fisheries Management Act* section 94 permit) and NPWS (scientific collection licence).

Methods: quantitative wood anatomy

- Within each growth layer:
- 1.Mean vessel area
- 2.Vessel density

 $\frac{n \ vessels}{target \ area}$

Stable isotope analysis and bomb pulse radiocarbon dating

- Separate individual layers
- Grind into powder
- Alpha cellulose extraction
- D¹³C & D¹⁸O measured using EA-IRMS @ James Cook University

(Elemental Analyser-Isotope ratio mass spectrometer)

• Radiocarbon content analysed at ANSTO STAR accelerator, converted to modelled age in calendar years

Results: timeseries comparison

- Most significant correlations for each parameter:
- Oxygen isotopes (δ¹⁸O)
 - Days of rain
 - SOI (Autumn)
- Carbon isotopes (δ¹³C)
 - Days of Rain
 - Nino 3.4 (Autumn)
- Vessel density
 - Autumn rainfall

Results - Spearman correlation

Consistent significant correlations with multiple ENSO indices, sea level and rainfall...

IPO & PDO – low frequency variability in pacific

SOI & NINO 3.4 – measures of ENSO (separated by season)

significant @ p=<0.05

spearman corr.

Qualitative interpretation

- During periods of drought:
 - Growth layers become more complex and interconnected
 - Oxygen isotopes indicate that mangroves are relying primarily on sea water for their water needs
 - Carbon isotopes indicate that photosynthetic productivity is reduced and water use efficiency is increased

Significance

- Grey mangroves hold significant potential for climate reconstruction
 - Potentially contribute to addressing the lack of palaeoclimate data on the Australian East Coast
- Assessments of mangrove health no longer limited to direct observations at singular points in time
 - Entire life history can be interpreted
- Can detect changes to estuarine habitats, and impacts on mangroves
 - Saline / fresh water balance
 - Favourability of environmental conditions to mangrove growth

...a powerful tool with many potential applications in climate, coastal and estuarine research

Thanks!

Contact: Matthew.j.Goodwin@uon.edu.au

This research is supported by the AINSE Honours Scholarship Program & ANSTO collaborative grant funding